
An Idea of Intermediate Language Memory Conflict Detection Based on 
Bi-LSTM 

Zeyao Xu 1 *, Letian Sha 2, Yuye Wang 3 and Haotian Zhang 4 
Nanjing University of Posts and Telecommunications, South, 210023, China 

Email: 623025516@qq.com 

Keywords: Deep learning; Vulnerability detection; Bi-LSTM; Cross-platform; Intermediate 
language 

Abstract: The mining of binary program memory vulnerabilities has always been one of the main 
directions of software security research. The ideas provided in the article include extracting 
vulnerability characteristics based on intermediate languages, performing cross-platform binary 
analysis through angr's simulated state management, serializing with Word2Vec, and then using 
Bi-LSTM deep learning algorithms to build a memory conflict model of the binary program, testing 
the binary The program analyzes and finds memory conflicts, and finally finds the overflow point 
for verification through the dynamic symbol execution of angr, so as to find the existence of the 
vulnerability. Experiments have been performed with the three types of collected vulnerabilities, 
and the feasibility of the integration method has been verified. 

1. Introduction 
Vulnerability detection technology is an important method to improve software quality security 

and reduce software security vulnerabilities. In order to automate vulnerability discovery, machine 
learning (ML) -based vulnerability detection technology has attracted widespread attention. 

Symbol execution, stain tracking, fuzzing, etc. are all commonly used methods in vulnerability 
mining. Traditional symbolic execution techniques only target source code and do not run programs. 
Dynamic symbol execution makes up for some of its shortcomings, but as the program scale grows, 
it often faces the problem of path explosion. Dynamic stain tracking technology can be separated 
from the program source code, but requires a lot of running memory. Fuzzing can be implemented 
quickly and the false alarm rate is low, but it is difficult to traverse different state spaces due to the 
data integrity check mechanism. 

Compared with the traditional vulnerability mining methods, the new vulnerability mining 
technology using machine learning has significant advantages in efficiency, accuracy and 
application scope. Among them, the combination of artificial neural tree (ANN) and vulnerability 
mining [1] proved to have significant effects. Deep learning is pre-trained in a multi-layer 
self-encoding neural network based on the traditional ANN, which improves efficiency and data 
capacity. Since 2012, small-scale recurrent neural networks based on deep learning [2] 
(reduced-size RNNs) and bidirectional LSTM (Bi-LSTM) [3] networks have been used for efficient 
vulnerability analysis experiments, but the latter is only for source code. 

Currently, machine learning-based vulnerability mining technologies are mainly focused on 
component or file level detection, which still requires a large amount of manual participation. The 
use of source code detection also limits the general performance of the model across platforms. 
Because binary programs lack semantics such as functions and variable types Information, 
source-oriented techniques cannot be used with binary programs. On the other hand, the false 
positive rate of vulnerability analysis in static analysis is high, and the false negative rate in 
dynamic analysis is high. 

Intermediate Representation (IR) [4] is a language with both source code and assembly language 
characteristics. It can be used for both static and dynamic analysis with the support of specific tools 
(such as angr). This paper proposes a memory conflict detection method based on the Bi-LSTM 

2019 International Conference on Math and Engineering (ICME 2019)

Copyright © (2019) Francis Academic Press, UK DOI: 10.25236/icme.2019.065383



algorithm using an intermediate language. 

2 Method Workflow Analysis 
2.1 Generate training samples 
2.1.1 Translate the original sample into vex IR 

We use a large number of published vulnerabilities and their patches (source code), compile them 
into binary executable files, and then translate them into vex IR. VEX IR is an arch-agnostic 
intermediate language generated by the memory leak detection tool Valgrind [5]. It consists of many 
IR SuperBlocks (IrSB). Each block contains 1 to 50 vex instructions. The vex instruction includes 
information such as variable types, status values, and jump addresses, and can describe operations 
such as memory reads and writes and arithmetic operations. Take x86 machine instructions addl% 
eax% ebx as an example, the corresponding IrSB is shown in Table 1: 

Table 1 VEX translation result of an x86 instruction 

 
2.1.2 Serialization into input vector 

angr is a platform-agnostic python framework for analyzing binary files [6]. Simulation 
Managers is one of its main functions. Importing Valgrind's libvex library into angr can traverse the 
state space of binary files on any platform and generate VEX IR. Angr can also use pyvex to 
encapsulate the vex statement internally and express the semantics concisely, thereby providing 
great convenience for filtering irrelevant instructions and refining vex IR. Referring to the Valgrind 
document, we finally selected 1100 related operation instructions for the process description, 
allowing their IR blocks to be combined in different orders to form a text sequence that uniquely 
identifies various machine instructions, as shown in Table 2. 

Table 2 VEX IR keyword extraction example 

 
We selected three types of vulnerabilities (stack overflow danger function, format string, UAF) 

from a large amount of data according to vex semantic classification. Based on the text sequence, it 
is also necessary to construct a digital vector that can be used as the input of the ML algorithm. We 
initially uniquely mapped these instruction elements to integers from 1 to 100 to identify each text 
element, and mapped operations with similar logical relationships to related Adjacent integers are 

384



used to express semantics (see Figure 1). But on this basis, we consider that in reality, the different 
execution order (ie, timing relationship) of the same operation in the execution flow is also the key 
to affecting whether it is a vulnerability. 

 
Figure 1 Mapping relationship between VEX keywords and integers 

Word2vec is a neural network model used to generate word vectors. We use the VEX syntax 
definition and a large number of VEX original texts as Word2vec's corpus, and have implemented a 
two-dimensional array representing both time series and logic to represent vex instructions. The 
visual representation is shown in Figure 2. Statements with similar execution times and statements 
with similar logical relationships are adjacent. 

 
Figure 2 Vector projection illustration 

2.2 The Bi-LSTM neural tree model 
Since the digitized input has two dimensions, we must adopt an algorithm that is suitable for 

expressing the function of time series relations. When the RNN processes the sequence in time 
series, it simply adds future information to each point in the sequence by delaying one-way. The 
bidirectional long-short-term memory recurrent neural network (Bi-LSTM [7]) can capture the 
complete past and future information of each point in the input sequence, and can capture the 
long-term program logic and the temporal relationship formed by the semantic structure, thereby 
more Effectively capture vulnerable programming patterns. 

Train Bi-LSTM model under Keras framework. Take the vector (csv file) obtained in 2.1.3 as 
input, the data set size is 1633, of which 1249 are used as training set (76%), and 384 are used as 
validation set (24%). Indicates that the number of flags is set to 294, batch_size = 64, epochs = 55; 
binary_crossentropy is used for the loss function, rmsprop and verbose = 2 are optimized for model 
training, and one record is output for each epoch (Figure 3). 

0 log10(x)
0

0.5

1

1.5

2

2.5

3

log10(x)

IMark

AbiHint
LDle

PUT
GetI

Add8x8

Sqrt32F0x4

SHA256

x :integers
from 1 to 1100

385



 
Figure 3 Screenshot of the running process 

The details of the output Bi-LSTM model are shown in Figure 4. Our model has a total of 5 
layers, the first two layers output 3D tensors, and the last 3 layers output 2D tensors. Activations 
represents the data dimension after each layer. Param in the third column represents the training 
amount. 

 
Figure 4 Model details display 

2.3 Model prediction performance test 
We finally selected Sqlite (old version) with a certain number of vulnerabilities and a code size 

of about 200,000 lines to simulate memory conflict analysis. 
Sqlite is converted into a keyword sequence according to the same process of generating 

Bi-LSTM training samples. At this time, a function name is added to the instruction header and 
backed up, as shown in Table 3. It is then serialized and predicted using the Bi-LSTM model. 

Table 3 Sqlite function VEX IR keyword serialization (partial display) 

 
Another main function of the angr framework is the vulnerability detection combined with static 

386



and dynamic symbol execution [6], and angr can remove unwanted paths through parameter settings 
to avoid path explosion. After predicting the model, the data block where the memory conflict is 
found is obtained. Based on the function name backed up before, the analysis function of angr is 
used to find the specific overflow point of the vulnerability. 

3. The Experimental Results and Analysis 
For the accuracy of Sqlite analysis and detection, we get the results shown in Figure 5: 

 
Figure 5 Memory leak detection results for Sqlite 

We made predictions on 254 data blocks, including 198 Non-vulnerable and 56 vulnerable data. 
According to Figure 10, 43 vulnerable data blocks were accurately predicted, 13 were missed, 2 
were false positives, precision was 0.96, recall was 0.77, and F1-score was 0.85. The data proves 
that the test results of this method are more accurate under certain error tolerance. The prediction 
false alarm rate for memory conflict is low, but the false negative rate is relatively high. 
Considering the small amount of vulnerable data in this experiment, under the larger vulnerability 
data, the model established by this method should obtain more ideal results. 

Conclusion 
It has been verified that the deep learning-based cross-platform memory conflict detection 

method proposed for software binary vulnerabilities proposed in this article is relatively common 
based on file or function level methods and can perform deep learning-based detection with finer 
granularity. While traversing the execution flow, more accurately and efficiently locate the location 
of memory conflicts, greatly reducing the scope of vulnerability detection, thereby greatly reducing 
the target scale of dynamic symbol execution. Has good application prospects and development 
space. 

References 
[1] B. Ingre and A. Yadav. Performance analysis of NSL-KDD dataset using ANN. In Proc. Int. 
Conf. Signal Process. Commun. Eng. Syst., Jan. 2015, pp. 92-96. 
[2] M. Sheikhan, Z. Jadidi, and A. Farrokhi. Intrusion detection using reduced-size RNN based on 
feature grouping. Neural Comput. Appl., vol.21, no.6, pp. 1185-1190, sep.2012. 
[3] Guanjun Lin, Jun Zhang, Wei Luo, and Lei Pan. Vulnerability discovery with function 
representation learning from unlabeled projects. Presented at the CCS’17, Oct 30-Nov3, 2017, 
Dallas, TX, USA., pp. 19-49. 
[4] Kim S, Faerevaag M, Jung M, et al. Testing intermediate representations for binary 
analysis[C]//Proceedings of the 32nd IEEE/ACM International Conference on Automated Software 
Engineering. IEEE Press, 2017: 353-364. 
[5] Nethercote N, Seward J. Valgrind:a framework for heavyweight dynamic binary 
instrumentation[J]. Acm Sigplan Notices, 2007, 42(6):89-100 

387



[6] Analysis an doptimization of Angr in dynamic software test application[J]. Computer 
Engineering and Science; 2018 Issue z1. pp.163-168 
[7] Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging[J]. arXiv preprint 
arXiv:1508.01991, 2015 

388




